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Abstract

We extend to a possibly infinite chain the conformally invariant mechanical system that was introduced 
earlier as a toy model for understanding the topological Yang–Mills theory. It gives a topological quantum 
model that has interesting and computable zero modes and topological invariants. It confirms the recent 
conjecture by several authors that supersymmetric quantum mechanics may provide useful tools for under-
standing robotic mechanical systems (Vitelli et al.) and condensed matter properties (Kane et al.), where
trajectories are allowed or not by the conservation of topological indices. The absences of ground state and 
mass gaps are special features of such systems.
© 2016 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Topological Quantum Field Theories TQFT’s are possible realisations of the invariance under 
general local field transformations general coordinates invariant symmetries. Such an invariance 
goes beyond that of current gauge theories. The first non-trivial example of a TQFT was intro-
duced by Witten [1] showing that the genuine N = 2 supersymmetric gauge theories contains 
observables that describe the Donaldson invariants. The reinterpretation [2] of this theory ap-
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peared soon after, as a suitably gauge-fixed quantum field theory stemming from a classical 
topological invariant that explores the BRST cohomology of general Yang–Mills field transfor-
mations modulo ordinary gauge transformations. Because the pattern of TQFT’s is that of an 
ultimate type of gauge-fixing, and because they can be solved, they greatly interested Raymond 
Stora, who wrote himself a very interesting article on the subject [3].

At the heart of TQFT’s, the topological BRST nilpotent operator Q plays a fundamental role. 
It is such that the TQFT Hamiltonian is basically H = 1

2 [Q, Q]. One often defines the physical 
Hilbert space as the cohomology of Q (states which are annihilated by Q without being the Q
transformation of other states). This unambiguous definition of observables from the cohomol-
ogy of a BRST operator is perfectly suited for the gauge theories of elementary particles (where 
the expression of Q is more restricted in comparison to that of a TQFT and the relation between 
Q and H is different). The cohomology of a TQFT is often contained in another cohomology, in 
which case it is called an equivalent cohomology [2–4]. There were doubts for a while on the va-
lidity of this construction of TQFT’s, so [5] defined and explored a solvable quantum mechanical 
supersymmetric example to check very precisely all the details and confirm the construction. The 
model was that of particle moving in a punctured plane, where the closed trajectories carry topol-
ogy because of their non-trivial winding numbers. Instantons exist in this case because one choses 
in this case a potential that yields a supersymmetric action with twisted scale and vector super-
symmetries, in fact a superconformal supersymmetry. Strikingly, the ingredients for constructing 
the model completely reproduce those of the much more involved Yang–Mills topological theory 
and we completely solved it in [5]. The goal of this article is to generalise this model to a more 
physical multiparticle case with conformal interactions. To do so, we need first to review [5].

Afterward we will show that [5] can be extended into a very intriguing model, which is quite 
beautiful and might furthermore have richer applications in practical domains. It is an explicit 
example of what was foreseen long time ago in [12], for building some robots with rotational 
constrained degrees of freedom, and more recently by condensed matter physicists, for instance 
[13]. Our model generalises [5] and gives a sort of conformally vibrating lattice where each 
site is a particle interacting by superconformal interactions with its nearest neighbours (two in 
this present case). This model exhibits non-trivial instanton solutions and has some topological 
observables.

2. The one-particle conformal supersymmetric topological model

The model is a quantum mechanical system of a particle moving in a 2D-plane where one 
excludes the origin and submitted to a potential we will shortly display. One has a non-trivial 
topological structure because of trajectories with different possible winding numbers 0 ≤ N ≤ ∞
around the origin. The classical topological symmetry is the group of arbitrary local deformations 
of each particle trajectory. They can be possibly defined modulo local dilatations of the distance 
of the particle to the origin. We will see that the model is a conformal one.

We call the time by the real variable t and the Euclidian time by τ , with t = iτ . The cartesian 
coordinates on the plane are qi , with i = 1, 2, and we often use complex coordinates z = q1 +q2.

We select trajectories with periodic conditions. Namely, the particle does a closed (multi-)loop
between the initial and final times t = 0 and t = T (we will choose T = 1). An integer winding 
number 0 ≤ N ≤ ∞ is assigned to all trajectories which can be classified in equivalence classes 
according to N .
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As in the Yang–Mills TQFT [2], one starts from a topological classical action Icl[�q], (with 
the above enlarged gauge symmetry). It must be gauge-fixed in a BRST invariant way to define 
a path integral so as one can compute some topological observables.

Icl[�q] must be independent on the time metric and on local reformations of trajectories. Such 
conditions are satisfied for

Icl[�q] = 1

g

∫
dθ = 1

g

T∫
0

dτ θ̇(τ ) = 1

g

T∫
0

dτ
εij q̇iqj

�q2
= 2πN

g
(1)

where g is a real number that will become a coupling constant. In fact, Icl[�q] measures the 
winding number N of the particle (times 2π

g
). It is a tremendously simplified version of the 

second Chern class 
∫

d4x trF ∧ F , F being the curvature of a Yang–Mills field. Here and in 
what follows the symbol Ẋ denotes dX

dτ
.

The TQFT path integral is defined from a BRST invariant gauge-fixed action added to Icl as 
in [2]:

∫
D[�q] exp−Icl[�q] →

∫
D[�q] exp−

(
Icl[�q] + gauge − fixing

)
(2)

This way of proceeding is called nowadays a localisation procedure.
Once the details of “gauge − fixing” have been determined, one can compute topological 

quantities from Green functions of well chosen composite operators O.

Topological information =
∫

D[�q]O exp
(
Icl[�q] + gauge − fixing

)
�= 0 (3)

The way it goes is as follows. The action Icl[�q] must be invariant under the gauge symmetry

�q(t) → �q(t) + �ε(t) (4)

where ε(t) is any given local shift of the particle position q(t) with appropriate boundary condi-
tions – it cannot change the winding number of the trajectory. Such shifts can be decomposed in 
radial and angular deformations, and one foresees an interesting decomposition between angular 
and radial shifts, already noticed in [5].

The BRST transformation laws associated to the symmetry (4) are basically found by chang-
ing the parameters ε(t) of arbitrary shifts into an anticommuting ghost �(t) and an anticommut-
ing antighost �(t), and introducing a Lagrange multiplier �λ(t), with

s �q = �� s �� = 0 s �� = �λ s�λ = 0 (5)

The operation s acts on field functions as a differential operator graded by the ghost number. 

A formal superfield unification exists that unifies ��(t), ��(t) and d �q(t) in a single quantity 
and s can be interpreted as a differential operator.

To get a gauge-fixed action with a quadratic dependence on the velocity �̇q , one chooses a 
localisation gauge function q̇i + δV

δqi
. The prepotential V [q] is a priori arbitrary, but the equivari-

ance with respect to dilatations determines its dependence on �q, as it will be shown shortly. The 
gauge-fixing term is s-exact, and gives the (supersymmetric) BRST invariant action Igf
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Igf [�q, ��, ��, �λ] =
T∫

0

dτ

(
1

g
θ̇ − s�(

1

2
λi + q̇i + δV

δqi

)

)

=
T∫

0

dτ

(
1

g
θ̇ − 1

2
λ2

i + λi

(
q̇i + δV

δqi

)
− �i

(
�̇i + δ2V

δqiδqj

�j

))
(6)

Notice that the boundary terms V̇ add up to θ̇ after the elimination of the auxiliary field by its 
algebraic equation of motion, so that their combination can cancel out.

The partition function is

Z =
∫

D[�q]D[ ��]D[ ��]D[�λ] exp−Igf (7)

and, given some functionals O(�q) one has well-defined Euclidian path integrals

< O >=
∫

D[�q]D[ ��]D[ ��]D[�λ]O exp−Igf (8)

A Faddeev–Popov field theory interpretation of the gauge-fixing can be done by considering 
q̇i + δV

δqi
as a gauge function for the quantum variable �q and by inspecting the Faddeev–Popov 

determinant obtained by the path integration over the ghosts. The topological non-triviality of 
the theory occurs when this determinant has zero modes.

The BRST invariance of the field polynomial O, if any, allows one to prove the topological 
properties of < O >, that is the fact it only depends on the winding number N of the trajecto-
ries. Any given topological observable must be first computed in a given topological sector N , 
and one can possibly sum over N , sometimes with a relevant regularisation. Our knowledge of 
supersymmetric quantum mechanics tells us that this mean value may depend on the class of 
the function V . What happens is that in the case of topological field theories, the Euclidian path 
integral explores the moduli space of the equation q̇i + δV

δqi
= 0, as a result of the gauge fixing, 

which is non-trivial only for relevant choices of V . The topological observables are defined from 
the cohomologies of the BRST operator with all possible ghost numbers.

A possible way to select the prepotential V (�q) leading to interesting topological information 
has been investigated in [6]. One asks for a larger invariance of the action that is more restrictive 
than the topological BRST symmetry, namely a local version of it, for which the parameter 
becomes an affine function of the time, with arbitrary infinitesimal coefficients. It is called a 
vector BRST symmetry. In fact, in our case, it can be identified with the requirement of conformal 
symmetry.

The “local” BRST transformations δl are

δlIgf [�q, ��, ��, �λ] = 0 (9)

where

δl �q = η(t) �� δl
�� = 0 δl

�� = η(t)�λ − ˙η(t)�q δl
�λ = ˙η(t) �� (10)

and η(t) = a+bt where a and b are constant anticommuting parameters. The idea of local BRST 
symmetry was earlier considered in a paper with Raymond Stora [9], for the sake of interpret-
ing higher order cocycles which occurs when solving the anomaly consistency conditions. This 
symmetry has been shown to play a role in topological field theories in [7].
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V satisfies the following constraint due to this local symmetry, [6]

δV

δqi

+ qj

δ2V

δqi δqj

= 0 (11)

This constraint is solved for V (�q) ∼ θ or V (�q) ∼ log |�q| where θ is the angle such that z =
q1 + iq2 = |�q| exp iθ . We introduce again a multiplicative scale with a real number g. By putting 
this value of q̇i + δV

δqi
in (6) and eliminating the Lagrange multiplier λ by its equation of motion 

we obtain (all boundary terms compensate against each other thanks to the choice of V ):

Igf [�q, ��, ��] =
T∫

0

dτ

(
1

2
q̇2
i + 1

2g2 �q2
− �i

(
�̇i + δ2θ

gδqiδqj

�j

))
(12)

One has

δ2θ

δqiδqj

= 1

�q2

(− sin 2θ cos 2θ

cos 2θ sin 2θ

)
ij

= 1

�q2

(
cos θ − sin θ

sin θ cos θ

)(
0 −1

−1 0

)(
cos θ − sin θ

sin θ cos θ

)
ij

(13)

The signal that the theory truly carries some topological information is the existence of an 
instanton structure, leading to fermionic zero modes.

Our gauge-fixing gives an action whose bosonic part is the square of the gauge function or lo-
calisation function. Its Euclidian equations of motion are thus obtained when this gauge function 
vanishes

q̇i + 1

g

εij qj

�q2
= 0 (14)

�̇i + 1

g

δ2θ

δqiδqj

�j = 0 (15)

In the complex number representation with z = q1 + iq2 and �z = �1 + i�2, one has sz = �z

and one can write these equations as

− igż = 1

z
(16)

− ig�̇∗
z = 1

zz
�z (17)

(we use the symbol ∗ for the complex conjugation on the ghost �∗
z not to do a confusion with 

antighost �z). Assuming periodic boundary conditions, one can easily solve the first-order equa-
tion for z as a particle making N cycles at constant angular speed with radius R ∼ 1/

√
N . More 

precisely:

2πNg − 1

zz
= 0 z = 1√

2πNg
exp iθ θ = 2πNt (18)

Therefore, since the action vanishes for such trajectories, one finds that the model has instantons 
indexed by an integer N , which are circles described at fixed angular speed with frequency 
2πNg, a tremendously simplified version of the Yang–Mills instantons.

The equation of motion of the fermion can be written as
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ig�̇∗
z + 1

zz
Uθ�z = 0 (19)

Uθ = RθCRθ (20)

Uθ is in fact the subgroup of the large rotation group O(2) elements connected to the inver-
sion/conjugation matrix C with detC = −1. The other components of O(2), the SO(2) “small” 
rotation matrices R, with detR = 1, are connected to the identity. In matrix notations, one has 
for the vector representation:

C =
(

0 −1
−1 0

)
(21)

Thus the meaning of Eq. (13) is

1

zz

(
Uθ

)
ij

= δ2θ

δqiδqj

= δ2Log
√

zz

δqiδqj

= 1

�q2
RθCRθ (22)

In the complex number representation the rotation Rθ is z → exp iθ z and the matrix Uθ is the 
complex conjugation followed by the multiplication by exp2iθ , z → exp 2iθ z.

The solution of the equation of fermionic zero mode in the field of the instanton with winding 
number N is obtained by defining

�(t) = �0 exp−i2πNt (23)

that implies that �0 is time independent and satisfies

�∗
0 − C�0 = 0 (24)

Thus �0 is an eigen-vector of the operator C. Depending on the orientation of the winding 
number N of the instanton, we have a fermionic zero mode

�0 =
(

1
±1

)
(25)

The fermionic zero modes can be drawn as constant vectors attached to the particle and run-
ning along the circles of radius 

√
2πNg at a constant angular speed 2πNg.

To summarise, for each instanton (here we reinstall the period T previously rescaled at T = 1),

z(n) =
√

T

2πN
exp−i

2πNt

T
N ∈ Z (26)

one has a ghost zero mode

�(n)
z = �0z exp−i

2πNt

T
(27)

where �0z is a constant Grassmann variable. The Euclidian energy and angular momentum of 
the action evaluated for these field configurations vanish for all values of N .

Because of these degenerate zero modes, BRST-exact observables exist with non-vanishing 
mean values. They are in fact independent on energy and time because of the BRST-exactness of 
the action. Moreover, they can be computed as a series over the topological sector index N .

We verified these properties in [5] by explicit computation in Hamiltonian formalism, using 
the technics developed in [8,10,11,14].

We found a continuum spectrum of states that are normalisable as plane waves in one dimen-
sion. This is in fact a consequence of the continuity of the spectrum of the Hamiltonian in the 
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radial direction. They build an appropriate basis of stationary solutions since, with the appro-
priate normalisations factor, one has 

∑
n

∫
E>0 dE|E, n >< E, n| = 1, where n is the angular 

momentum quantum number. On the other hand, for E = 0, the solvable Schrödinger has no ad-
missible normalisable solution. Thus we have a continuum spectrum, bounded from below, with 
a “spin” degeneracy equal to 4 and an infinite degeneracy in n. The peculiarity of this spectrum is 
that there is no ground state, since we have states with energy as little as we want, but we cannot 
have E = 0. This is a consequence of the conformal property of the potential 1

|�q|2 .

Since we cannot reach the energy zero which would be the only Q and Q invariant state, 
we concluded that supersymmetry is broken, and that the model is for a non-trivial topological 
supersymmetric quantum mechanics.

As for the computation of BRST invariant observables, we found by dimensional arguments 
that the candidates are (in polar coordinates)

Oθ = [Q,r�θ ]+ = [Q,r�θ ]†
+ Or = [Q,r�r ]+ = [Q,r�r ]†

+ (28)

The mean values of these operators between normalised states could be computed as

< E,n|[Q,r�θ ]+|E,n >

< E,n|E,n >
= n + i

1

g
(29)

and

< E,n|[Q,r�r ]+|E,n >

< E,n|E,n >
= lim

L→∞

L2J 2√
n2+f 2

(L)

∫ L

0 drJ√
n2+f 2(r)

(30)

The last quantity is bounded but ill-defined, so we rejected it. Therefore, for any normalised
state |φn >= ∫

dEρ(E)|E, n > with a given angular momentum n, the expectation value of 
[Q, r�θ ]+ is

< φn|[Q,r�θ ]+|φn >= n + i
1

g
(31)

independently of the weighting function ρ.
If we now sum over all values of n, what remains is the topological number

< Oθ >=
∑
n

< φn|[Q,r�θ ]+|φn >=
∑
n

n + i
1

g

∑
n

1 (32)

Our result [5] meant that there are two observables, organized in a complex form, in the 
cohomology of the punctured plane.

3. What’ new after years: Chains of topological oscillators with conformal properties

We wish a system of equations for the interactions of particles confined in a 2D-surface with 
planar complex coordinates zn and possible conformal interactions between next neighbours as 
a generalisation of what we presented in the previous section. Non-trivial topology can arise 
because the potential is such that particles cannot sit on top of each other.

For concrete purposes and the sake of simplicity, we ask that the particles can have stable or 
metastable rest solutions on a line at given locations un, with dun

dt
= 0. We choose the following 

particle alternate rest positions on a line
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u2n = 2na

u2n+1 = 2na + b (33)

In fact one has

u2n+1 − u2n = b

u2n+2 − u2n+1 = 2a − b ≡ c

u2n+3 − u2n+2 = 2na + 2a + b − 2na − 2a = b

etc. . . . (34)

So the distance between the site u2n and its left neighbour u2n−1 is b and between un and its 
right neighbour u2n+1 it is c = 2a − b, b �= c, and so on

. . . → (u2n−1) ← b → (u2n) ← c → (u2n+1) ← b → (u2n+2) ← c → (u2n+3) ← b → . . .

(35)

In fact, we wish to build a system that is analogous to a bidimensional crystal of particles that 
interacts with few (here two) of their neighbours, by demanding some conformal properties and 
instanton solutions. The use of supersymmetric quantum mechanics is thus desirable to define 
and compute topological invariants for they system by path integration.

We have in mind to describe, in particular, systems as in [12], and recently, [13], for rotor 
models, chemical chains, etc...

The potential we will introduce will not give an integrable model. Rather, it has classical 
solutions that reproduce the behaviour systems with rigid links between points, such as articulate 
bars with rotation freedom, for instance the rods coupling the wheels of a locomotive, and the 
parameters can be adjusted such one has a global movement, with a careful adjustments of the 
articulations for which some indices don’t vanish.

In fact, the multivalued prepotential we will introduce is just what is needed to possibly go 
“off-shell” from the classical behaviour of an articulated classical system, with stable classi-
cal trajectories corresponding to rigid links between its elements. One builds a supersymmetric 
model to calculate indices and/or topological numbers that ensures non-trivial propagations, such 
as wave packets that are soliton and spin-like waves. The power of a TQFT is that, when one does 
the path integration and when the bosonic part of the classical systems hits a given instanton, 
fermionic zero modes can occur, and their path integration contributes by a normalised amount 
to a topological observables. In fact the Yang–Mills TQFT works this way, but our model just 
does the same in a much more concrete way.

We will be also concerned on possible limits, when n can be replaced by a continuous vari-
able x, as standard way of dealing with a very large number of particles, with a 1 + 1 field theory 
limit.

3.1. The equations

It is not a restriction to consider a generic value of n that is even. By inspiration from the 
Yang–Mills self-dual equations and the toy model [5], we choose

igżn = 1

zn − zn−1 − b
+ 1

zn − zn+1 + c

igżn+1 = 1 + 1
(36)
zn+1 − zn − c zn+1 − zn+2 + b
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So we have

ig(żn+1 − żn) = 2

zn+1 − zn − c
− 1

zn+2 − zn+1 − b
− 1

zn − zn−1 − b
(37)

We find indeed that, for these equations, we have static solutions for zp = up , with u̇p = 0, for 
all values of p.

If we define the Z’s as

zn(t) = un + Zn(t) (38)

we have

igŻn = 1

Zn − Zn−1
+ 1

Zn − Zn+1
(39)

with

ig(Żn+1 − Żn) = 2

Zn+1 − Zn

− 1

Zn+2 − Zn+1
− 1

Zn − Zn−1
(40)

These equations give solutions to the equations of motion derived from the topological gauge-
fixing of a topological term 

∫
�

dV2−neighbours, where the multivalued prepotential V2−neighbours is

V2−neighbours({zn}) =
∑
p⊂Z

(
Log|z2p+1 − z2p − c| + Log|z2p − z2p−1 − b|

)
(41)

These solutions extremise the following bosonic action

∫
�

dt
∑
i,p

(1

2
(q̇i

p)2 + 1

2g2

1

(qp − qp−1)2
+ 1

2g2

1

(qp − qp+1)2

)
+

∫
�

dV2−neighbours (42)

Some of the solutions of these coupled non-linear equations are in particular epicycles that 
are shifted along successive points on a lines. They are instantons, since they give the same value 
S = 0 for the action. In the next section we indeed give particular solutions. Generalising the 
steps for the one particle case the supersymmetric action will be

∫
�

dt
∑
i,p

(1

2
(q̇i

p)2 + 1

2

(δV2−neighbours

δq̇i
p

)2)
−

∑
i,j,p,q

∫
�

�
i

p

(
δij δ

pq d

dt
+ δ2V2−neighbours

δqi
pδq

j
q

)
�

j
q

(43)

We might extend the computation for more than two next-neighbour oscillators using more 
length scales

V4 neighbours({zn}) =
∑
p⊂Z

(
Log|z2p+1 − z2p − c| + Log|z2p − z2p−1 − b|

+ Log|z2p+2 − z2p − e| + Log|z2p − z2p−2 − f |
)

(44)
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3.2. Epicycles as particular solutions

Let us define

n = Zn − Zn−1 (45)

Eq. (39) reads as

iġ2p = 2

2p

− 1

2p+1
− 1

2p−1

iġ2p+1 = 2

2p+1
− 1

2p+2
− 1

2p

and we have no need to distinguish between even and odd sites.

3.2.1. Solutions with constant frequencies and radii
If we take solutions with the same radii |Zp| = R, all particles rotate at the constant angular 

speed ω = √
2πNg. The Zp are the summits of a regular rotating regular polyedra in a circle, 

and one gets a representation of a fixed solid that rotates with a speed related to its dimension. 
As seen in the rest frame of one of the zp , the particles describe epicycles. The solution is given 
by:

n = 1√
2πNg

exp i(2πNgt + δn) (46)

and the phases δn satisfy

exp iδn = 2 exp iδn − exp iδn−1 − exp iδn+1 (47)

that is

exp iδn − exp iδn−1 − exp iδn+1 = 0 (48)

This equation can be solved using determinant techniques.

3.2.2. Solutions with alternate frequencies and radii
We have solutions where the last two off-diagonal terms on the right hand-side compensate 

each other. They are such that n describes circles at a constant frequency Neven for even n and 
at a possibly different frequency Nodd for odd n: the phase of Zn(t) differs from that of Zn+2(t)

by odd numbers of π , namely

2p = 1√
2πNeveng

exp i(2πNevent + δeven)

2p+2 = − 1√
2πNeveng

exp i(2πNevent + δeven) (49)

and

2p+1 = 1√
2πNoddg

exp i(2πNodd t + δodd)

2p+3 = − 1√
2πNoddg

exp(2πNodd t + δodd) (50)

The radii are respectively 1√
even and 1√

odd
for the even and odds n.
2πN g 2πN g
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Going back to the variables Z’ and z one sees moreover that the coordinates zn describe 
involved epicycles.

3.2.3. The limiting case for the wheel rods of a steam locomotive
There is interesting limit of the last case, when the frequency of for instance the particles with 

odd indices is very large, Nodd → ∞. Then Z2p−1 runs at a very high speed on a circles of radius 
almost equal to zero around Z2p, and Eq (39) becomes

igŻ2p = 2

Z2p

(51)

modulo terms of order O(1/Noddg). In the limit, one has

z2p ∼ 2pa + 1√
4πNeveng

exp i(4πNevent + δeven)

z2p+2 ∼ (2pa + 2a) − 1√
4πNeveng

exp i(4πNevent + δeven) (52)

Each particle with an odd index runs on a very short radius trajectory at a very high frequency, 
that is, it is basically glued by an almost rigid bar to a particle with an even index that runs itself 
on a circle at finite frequency with a finite radius 1√

4πNeven
, centred on a position u2p, which is 

almost exactly the center of rotation of a very fast running particle in a 1
Nodd

approximation, and 

so on. In the limit where the winding number Nodd goes to infinite, the odd particle becomes
invisible, as a small amplitude local vibration in the middle of a bar! On the other hand the 
trajectories of the even particles are circles of radius 

√
2πNeveng around the points u2n = 2na, 

with alternative phase as read in Eq. (52). For these trajectories one can put a rigid articulate bar 
between z2n and z2n+2.

This interesting solution describes the behaviour of the rods of the wheels of a steam locomo-
tive. The zp are nothing else than the points where the rods connect two neighbours wheels. This 
also describes the apparatus of [13].

This is an interesting model where a conformal potential reproduces on-shell articulate me-
chanical attachments. Since we have a non-linear equations, there are certainly other solutions, 
with more complicated propagating waves.

3.3. The supersymmetric Lagrangian

It is

S =
∫
�

dt
∑
p

1

2
(q̇i

p)2 + 1

2

( δV

δqi
p

)2

−
∑
p,r

ψ
i

p

(
δprδij

d

dt
+ δ2V

δqi
pδq

j
r

)
ψ

j
r (53)

that is, modulo the introduction of auxiliary fields and their elimination from the action

S =
∫
�

dt ,Q{
∑
p

ψ
i

p

(1

2
bi + q̇i

p + δV

δqi
p

)
} −

∫
�

dV (54)

Here the (topological) supersymmetric graded differential operator is defined as

Qq = ψ, Qψ = 0, Qψ = b, Qb = 0 (55)



L. Baulieu, F. Toppan / Nuclear Physics B 912 (2016) 88–102 99
The Lagrangian is Q-exact, modulo a topological term. The nilpotency of Q proves the 
Q-invariance. It is noteworthy that S is also Q-invariant (and Q-exact), modulo a boundary 
term, where the definition of Q is obtained from that of Q by exchanging ψ and ψ and b and 
−b, Qq = ψ, Qψ = 0, Qψ = b, Qb = 0. Q and Q anticommute. The action can be written as 
a Q-exact term. However, the action is not QQ-exact.

With our choice where V only depends on linear combinations of log |�qp − �qr |, the action 
is (super) conformally invariant and, moreover, the boundary term 

∫
dV is non-trivial, and dis-

cretely multi-valued.

3.4. Zero modes for the chain

Let us come back to the equation whose solutions extremise the bosonic part of the action of 
our conformal oscillator chain lattice

ig(Żn+1 − Żn) = 2

Zn+1 − Zn

− 1

Zn+2 − Zn+1
− 1

Zn − Zn−1
(56)

We defined n = Zn+1 − Zn and the topological symmetry operation on the particles is Qzn =
QZn = ψn. So by defining �n ≡ ψn+1 − ψn we have

QZn = �n (57)

The supersymmetric Lagrangian is

Q
∑
n

�n

(
iġ∗

n − 2

n

+ 1

n+1
+ 1

n−1

)
(58)

Therefore the zero modes for the fermions are the non-trivial solution the Q variation of the 
topological gauge function when the positions satisfies it, that is

ig�̇∗
n − 2Uθn�n

|n|2 + Uθn+1�n+1

|n+1|2 + Uθn−1�n−1

|n−1|2 = 0 (59)

Consider the previously found trajectories

n = 1√
2πNg

exp (i2πNt + δn) (60)

There are zero modes

�n(t) = �n,0 exp − i2πNt (61)

where the �n,0 are time independent. Indeed, after relevant manipulations using the definition of 
the matrices Uθ , one gets the following conditions:

�n,0 = 2(exp 2iδn)�n,0 − (exp 2iδn+1)�n+1,0 − (exp 2iδn−1)�n−1,0 (62)

that can be solved using determinant techniques.
The topological invariant are Green-functions of the type∫

�[dzp][dψp][dψp][dbp]P(ψ, z) (63)

where P is Q invariant and has odd fermionic number.
We can compute as in [5] these invariants in the case of one particle as well of the Witten 

index of the theory, using the Hamiltonian formalism.
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4. The continuous limit n → ∞ and b, c, a → 0

4.1. The bosonic sector

We can consider the limit where the index n becomes a continuous one, and we have a chain 
of sites that can exhibits propagation of non-trivial waves.

This limit is quite strong: it is not only the difference between the radii of n and n+1 that 
becomes small; the difference between the angles θ(n) and θ(n+1) is also small. We could 
consider more subtle limits.

Let us suppose that we have a solution for each site

n = R exp iθn(t) (64)

where R is time independent but θn(t) has a non-trivial t dependence. Thus the equation of 
motion of θn is

−Rgθ̇n exp−iθn(t) = 1

R
(2 exp−iθn − exp−iθn+1 − exp−iθn−1)

= exp−iθn

R
[2 − exp−i(θn+1 − θn) − exp−i(θn−1 − θn)] (65)

In the continuous limit, n is replaced by a suitably normalised continuous length variable n → x, 
θn → θ(x), and one can write

igR2θ̇ (x, t) ∼ ∂2

∂2x
θ(x, t) + (

∂

∂x
θ(x, t))2 (66)

If we change variables, θ = logv(x, t), the former equation reads

igR2v̇(x, t) ∼ ∂2

∂2x
v(x, t) (67)

that is, a Schrödinger type free equations, with periodic boundary conditions for θ(x, t). In what 
follows we replace ∼ by an equality.

The general solution is easy to find by Fourier transform, using the time periodicity of v,

v(x, t) =
∑
N

vN exp−i(2πNt − R
√

2πNg x)) (68)

θ(x, t) = exp
∑
N

vN exp−i(2πNt − R
√

2πNg x)) (69)

Finally one gets non-trivial wave packets

(x) = R exp 2iπ exp
∑
N

vN exp−i(2πNt − R
√

2πNg x)) (70)

4.2. The fermionic zero modes

The zero modes continuous field is �n → �(x, t). The continuous limit of

ig�̇∗
n − 2Uθn�n

|n|2 + Uθn+1�n+1

|n+1|2 + Uθn−1�n−1

|n−1|2 = 0 (71)

is
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ig�̇∗
n = ∂2

∂2x

(
exp 2iθ(x, t)�∗(x, t)

)
+ [ ∂

∂x

(
exp 2iθ(x, t)�∗(x, t)

)
]2 (72)

or

ig�̇∗
n = ∂2

∂2x

(
v2(x, t)�∗(x, t)

)
+ [ ∂

∂x

(
v2θ(x, t)�∗(x, t)

)
]2 (73)

In short there are zero modes. Most of them will published in a more extended publication [15].

5. Discussion

We have shown a multi-particle example for which the requirement of local BRST symme-
try selects a superconformal quantum mechanical system with intriguing non-linear equations. It 
generalises the more elementary one particle model [5] and seems to provide a model with appar-
ently deeper applications. The spectrum of the theory has no ground state and a supersymmetry 
breaking mechanism occurs without the presence of a dimensionful parameter. The generalisa-
tion of these observations to a 2d quantum field theory by the continuous limit we sketched here 
is an interesting question.
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